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Abstract

.k Atudy te properties of the deterministic equivalent program

of a stochastic program with recourse. After a brief discussion of

the place of the stochastic programming model in the realm of stochastic

optimization and the definition of the problem under consideration, the

thr4o-4-e4 Jwu.g--aections are devoted tý the characterization of feasible

solutions' The-+e-4eet--seotI .en- amine the various properties of

the objective functions (dependent on or independent from the type of

distribution of the random elements).

4



1. Introduction. In the first part of this survey, we shall be

particularly concerned with the properties of the deterministic equi-

valent program of a stochastic program witL recourse. We shall restrict

our attention to the two-stage linear problem with fixed recourse.

These limitations have for principal purpose to simplify substantially

the presentation. However, whenever it will seem to be appropriate

we shall indicate the extent to which certain of these results can be
+

generalized. On the other hand, although the title indicates that

this paper is essentially a survey, a fair portion of the results

mentioned here have never appeared in print; most of these can be con-

sidered as sharpened versions of propositions which have appeared

previously or as a different approach to known results,which al]ows

for a somewhat more satisfactory treatment. A few results are genuinely

original.

We do not intend to give an historical account of the various

developments in this field; however, we shall try to sketch the evolution

one can observe in the statement of the problem as well as the various

techniques which have been used to resolve some of these difficulties.

The following parts of the survey will be devoted to some characterizations

of the optiral solutions of stochastic programs, to the nonlinear and

multiple recourse formulations and to some computational experiences as

well as a few selected applications.

*Some generalizations are so trivial in nature that they might remain
unmentioned.
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A

Before we give a precise mathematical definition of the problem,

it might be worthwhile to place this class of problems in a somewhat

larger context. Consider a decision maker faced with various alternatives.

His decisions are subject to a certain number of constraints and his goal

is to optimize a given criterion. However, at the time of his selection

of one of the alternatives, some of the parameters of the problem are

unknown to him. The amount of information which is given about these

parameters divides this family of decision making problems into two main

classes to which the economists refer as: decision making under uncer-

tainty and decision making under risk. In this first class of problems,

essentially nothing (or very little) of a quantitative nature is available

to the decision maker. In the second class, it is assumed that the decision

maker is given a description of these unknown parameters in terms of a

well determined probability law. (Various papers have studied models 4

where some partial knowledge of this probability law is available. In

[Miyasawa, 1968), and [Avriel and Williams, 1969] one can find a discussion of

information structures in stochastic programming problems.)

The term Stochas tic Progrcammng will be ret..rved for those pro-

gramming problems which fit in this second class. In the literature one

finds various pa'ers dealing with mathematical programs whose parameters,

or some of their parameters, are random, but which by our definition may

have little to do with stochastic programming. Some of these papers

discuss various problems the importance of which ranges from amazing

mathematical puzzles up to some important and sometimes difficult questions

e
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whose solution would most definitely enhance our chances of solving

"difficult" stochastic programs. For example, a complete solution to

the distribution problem:

Find the distribution function mf Q(A,b,c)

where Q(A,b,c) - {Hin cx I Ax - b, x Z O0

and A,b,c are random matrices,

is neither expected, nor is it necessary for solving a large class of

stochastic programs; however, it is obvious that any additional insight

one might gain in this question coLld prove very worthwhile.

Rather than giving an axiomatic definition of a model for stcchastic

programs, as can be done for linear programs [Dantzig, 1963, Ch. 3],

we shall limit ourselves to some of the characteristics of stochastic

optimization problems. In some sense we shall try to point to those

properties which constitute the essence of stochastic optimization models.

First, perhaps, the sequential nature of the problem, i.e., the decision,

is selected before the random elements, say C, of the problem can be

observed. Second, the solution is the selection of one particular decision,

say x in X, where a denotes the set of alternatives. Third, the

act,4al value z(x,E) of a given decision can only be determined after

.bserving C. Fourth, it is assumed that the decision maker has a

definite attitude towards risk described by some function, say u, which

usually has all the properties of the standard utility function in mathe-

matical economics. In particular, this implies that the criterion for

optimization can always be expressed in terms of the maximization (or
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a

minimization) of the expectation of utility. Finally, it is assumed

that the probability law of t is completely determined once a parti-

cular x is selected, i.e., we are given the probability erace

( (_,;,j). on which & is defined.

Thus a very abstract formulation of a stochastic optimization

problem could be:

Given [ x Ix) ,,Z'u

find inf E{u(z(x,&))}

j We do not intend to develop any further an abstract theory of optimization,

nor do we intend tc make any specific use of the above molel. Our purpose

in formulating a fairly abstract stochastic optimization problem is

th tt it might serve as a point of reference whenever we study any parti-

cular model fur stochastic optimization. Many problems studied in mathe-

matical economics, operations research, system engineering and control

theory, fit into this class of optimization problems: e.g., Markov

Programming, Inventory Problems, Stochastic Optimal Control Problems,...

Determining to which category a given stochastic optimization problem

belongs is irrelevant. In practice, these categories have considerable

overlap, e.g., the newsboy problemt which is probably the first example

of a stochastic programming problem found in the literature, is usually, and

rightfully so, thought of as belonging to that class of problems dealt

t Ariefly: Given a distribution of demand, a purchase cost, a selling

price and given that no unsold papers can be returned, a newsboy seeks
the optimal number of papers to order so as to maximize his expected
profit.
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with in inventory theory.

The first formulation of stochastic programs with recourse was

given by G. Dantzig [Dantzig, 19551 who called them linear prograns

under uncertainty, and by E. Beale (Beale, 1955] who used the name of

linear programs with random coefficients. Beale's formulation can be

viewed as an n-dimensional generalization of the newsboy problem.

Dantzig's formulation is in some sense somewhat more general, but still

includes many of the particular properties of the n-dimensional news-

boy problem. (See in particular the application [Ferguson and Dantzig,

19561 which motivated Dantzig's work.) As already mentioned above the

actual formulation of the problem has not remained scatic; this was

essentially due to the necessity of widening the range of possible appli-

cations as well as to the desitefor some%,hat more rigorous mathematical

foundations for the theory. Although we will not pursue this objective

here, this "grown-up" model for stochastic programming also allows for

a more in'teresting economic analysis.

2. Statement of the Problem. Let • (c(ý),q(ý),p(ý),T(&)) be a

random vector defined on a probability space (B,9•,) where =" is a

Borel subset of R N, N (n+l) (•rIl) + n - 1, 9 is a a-algebra containing

the Borel subsets of 'E, p is a probability measure defined on H. The

coordinates of a point , in E is a collection of four matrices

c,q,p and T of dimension I x n, 1 x n, m x 1 and m x n respectively,

i.e., c,q,p, and T are projections of • . By F we denote the

distribution function associated with p and by E the support of
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the distribution of •, i.e., the smallest closed subset of RN of

measure 1.

Definition (2.1). If for all i,.i,k the random functions c ( M

q )pi (ý) and q ( )tik(M have first moments, then the random variable

ý is said to satisfy a (weak) covariance ccndition. We shall assume

that such a condition is satisfied by the random elements of the problem.

From a practical viewpoint this condition might seem difficult to

verify, however it is easy to see that if & has variance, then assumption

(2.1) is automatically satisfied. Similarly, if either q or p and

T are fixed, then it suffices for ý to have first moments to satisfy

the covariance condition (2.1). Later when we shall refer to stochastic

programs satisfying a weak covariance condition, we shall always assume

that its random elements satisfy (2.1) or some other condition which is

weaker than (2.1), but would be sufficient to make the statement valid.

A stochastic progrnmming problem with fixed recourse can be formulated

as:

(2.2) Find inf z(x) - E {c(ý)x + Min[q(ý)yjT()x + Wy = p(r)]}
x10 y>O

Ax=b

where A, W, and b are fixed matrices of size m x n, m x n, and m x 1

respectively, and E denotes expectation with respect to r. We speak

here of fixed recourse by opposition to the case when the matrix W is

also random. This more genera: case has been discussed in [Walkup and

Wets, 1967-b].
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Without loss of generality, we can assume that W has full rank,

since otherwise there is a linear non-singular transformation of the

system of equations T(C)x + Wy = p(C) which would render some of the

rows of W identically zero; in which case the corresponding constraints

either generate some deterministic restrictions on the decision variable

x which could have been included in the constraints Ax = b, or they

constitute a genuine system of stochastic equations whose solution depends

non-trivially on E, i.e., no particular vector x can be found which

would satisfy these equations with probability I. In this last eventuality,

the problem would be infeasible.

As a function of x and C, which we shall denote by Q(xf), the

problem {Min q(&)ylWy p(E) - T(C)x1 might be infeasible or unbounded
y->O

below, in which cases we shall adopt the standard conventions and define

Q(x,ý), i.e., the optimal value of the program to be +4 and -•.

Thus the integrand of (2.1) might vary from +- to -• inclusively.

Accordingly, the integral E [.} = f • dp is defined to be +-, if the

integrand takes on the value +oo on a set of positive neasure. It is

_ if the integrand is less than +- a)inost everywhere and takes on the

value -- on a set of positive measure. If the integrand is finite almost

everywhere, it corresponds to the Lebesgues-StieltJes integral. This in-

tegral possesses essentially the same properties as the standard Lebesgues-

Stieltjes integral except that subadditivity replaces the usual

additivity property.

Due to the multistage nature of (2.2) it has been traditional and

also convenient to write (2.2) as follows:
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(2.3) Find inf z(x) E {c(Q)x + Min q(ý)y1 '1
subject to Ax = b1

T(C)x + Wy = p(O) a.e.

x_>O, y->O

where it is understood that the stochastic constraints T(C)x + Wy p(Q)

must be satisfied with probability 1 (a.e. denotes almost everywhere.)

As we shall see, this last condition follows immediately from the defini-

tion of E {.}. From a theoretical viewpoint it is sometimes convenient

to amalgamate the fixed constraints Ax = b, x Z 0 and the stochastic

constraints; however, for practical purposes such as formulation and

computational procedures it is clearly advantageous to separate them.

We shall follow this practice here.

Problem (2.3) can be seen to have all the attributes of the class

of stochastic optimization problems described in the introduction. The

sequential nature of the problem [Dantzig, 1955, Introduction] is clearly

illustrated: The decision process involves a choice of a decision x,

then & occurs and is observed; finally a recourse action y is selected

so as to satisfy the stochastic constraints. Since the decision y is

completely determined by the selection of a given x and the occurrence

of some &, the only real decision is the choice of x. The actual value

of the decision is determined as soon as x and ý are known, even

though determining this value involves solving a linear program; the structure

of the problem determines this value uniquely. The attitude towards risk

of the decision maker is reflected by the linearity of the objective, i.e.,
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it indicates neither risk aversion nor risk seeking. Finally, the

definition itself of the problem guarantees that one has all the

necessary information concerning the random elements of the problem.

3. The Deterministic Equivalent Program. As mentioned in the intro-

duction, the purpose of the first part of this survey is to characterize

the so-called deterministic equivalent program of problem (2.2). Let

z(x,E) = c(O)x + Q(x,')

then

(3.1) z(x) = E {z(x,)l = E{c(O)x + Q(x,')l = cx + Q(x)

where c the expectation of c(ý) is finite, since assumption (2.1) implies that

all the components of ý are integrable. Also, in view of the definition

4
of the function Q(x,&) and the integral, the functions z(x) and Q(x)

are well defined for all x in Rn as functions with range in the extended

reals, provided Q(x,ý) is measurable. This is fairly easy to prove, see e.g.,

[Kall, 1967, Section 1, Satz 1] or [Walkup and Wets, 1967-b, Lemma (2.3)]

t4 Note that among other things, it is possible for Q(x) and thus z(x) to be

identically +c or take on ouly the values +- and -00. The problem

(3.2) Find inf z(x) = cx + Q(x)

Ax = b

x_>O

is known as the Ictemin'stic equivalen+t procran of a stochastic program

with recourse. Later on we shall give a more detailed form of the

I
I
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deterministic equivalent program, but before we do so, we need to probe

somewhat deeper into the particularities of the function Q(x). The

next section is essentially devoted to the description of the region of

finiteness of Q(x). The properties that Q(x) possess on this set

receive further elaboration in Section 7.

4. Feasibility Region. The feasibility region of a mathematical program

is usually defined to be the set of points satisfying the constraints. One

can also define the feasibility region as the set of those points at which

the objective is less than +- accepting implicitly the convention that

the objective is +- outside the set determined by the constraints. In

most practical situations these two definitions are equivalent. That

this is also the case, for the class of problems under consideration,

does not follow--as is usual--from the definition of the problem. In

* fact, the notion of feasibility is a very touchy problem, especially

because the more natural definitions of feasibility do not seem to yield

any grip on the computational aspects of the problem, whereas a more

constructive type of definition seems to be a little too restrictive.

In the first papers dealing with stochastic programming this problem

did not arise, because the models considered were such that some assumption,

stated explicitly or present implicitly, eliminated this question. Let

K, - {x)Ax - b, x > o}

be the set determined by the fixed constraints of the problem. If we

assume velatively conmZete recourse, i.e., for all x in K there always
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exists some y Z 0 such that Wy - p(&) - T(&)x for every • in R ,

then obviously the feasibility region is determined by K1  alone. One

can verify that the models considered by [Beale, 1955], [Dantzig, 1955],

[Dantzig and Madansky, 1961), [Williams, 1963), [Williams, 1965], [Wets,

1966-a], and (El-Agizy, 1967], to name but a few, all implied relatively

complete recourse. This assumption limits somewhat arbitrarily the range

of possible applications, especially with respect to production models;

and even though in most cases its verification might be easy, in general

this might not be the case. During the last five or six years a certain

number of papers [Wets, 1966-b], [Kall, 1967], [Dempster, 1968], and

(Parrikh, 19671, to again mention only a few, started with approaching

the problem of (i) establishing criteria for determining when the assump-

tion of relatively complete recourse is satisfied, as well as (ii) con-

sidering a more general model for stochastic programming where this

undesirable restriction has been removed. In Section 6, we shall discuss

the problem of verifying the assumption of relatively complete recourse,

as well as some related questions. For the time being we restrict our-

selves to the problem we have defined and characterize as completely as

possible its region of feasibility.

As indicated above, we can define the feasibility set as the inter-

section of the set determined by the fixed constraints K1  and a set

constraints. We consider the following three candidates for K2 :

K2ii imm deemine by the inud cosrit eeae ytesohsi
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(i) K1 = {xl with probability 1 3 y _ 0 such that Wy = p(C) -T(O•x

- {x I Q(x,&) +0 with probability zero}

That these two definitions of K2 are equivalent follows immediately from

the +- and -- conventions we have adopted for the definition of the

function Q(x,•).

(ii) Ks - Ix IQ(x) <

This set is known as the strong feasibility set since it clearly defines

the region of finiteness of Q(x) (unless Q(x) takes on the value -e).

These two first definitions of feasibility seem to lead to natural

interpretations from a mathematical viewpoint as well as from an economic

standpoint. The third definition

(iii) Kp " jxjvý C I:-, 3y -> 0 such that Wy ,- p(O) - T(ý)x} '

can be viewed as requiring that the stochastic constraints be satisfied

for all points of the random elements which are "possible" where possible

is defined as those points lying in the support of the distribution

of . As we shall see, this last definition allows for a more con-

structive approach to the description of the feasibility region, but from

a purely mathematical viewpoint this "possibility" interpretation of the

stochastic constraints is not as gratifying as the probabilistic inter-

pretation associated with the first two definitions.

Although the following is not the case in general [Walkup and Wets, 1967-b],

for the problem at hand, we have that:
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Theorem (4.1). For a stochastic program with fixed recourse where

Ssatisfies a weak covariance condition, such as condition (2.1), the

relation

W~ P s(4.2) K K= K2 2 K2

holds.

Proof. Since = is some set of probability I, it follows that

K C K2. Thus to prove the first part of the theorem it suffices to

show inclusion in the other direction. The following notation has proved

to be very useful for problems of this type. Let

(4.3) pos W = jtjt = Wy, y _ 01

be the positive hull spanned by the columns of W, i.e., the closed

convex cone with apex at the origin generated positively by the points of Rm

corresponding to the columns of W. Thus, we can write

Kl {x~p() - T(ý)x c pos W with probability 1i

and

Kp = Jxlp(ý) - T(-•)x - pos W for all :, in 77

If x c KP then poc W contains a set, say •.x, of measure 1 witi

respect to the measure induced by thc random vector Zx(") = P() - T(x.

Since pos W is closed, the closure of A is also contained in pos W

and at fortiori so is ' the suppport of ; (). Since Z is a linear
Y, ~x

function of : (by definition p(') and T(') are canonical projections

of ) it follows that X and the closure of • ( ) coincide,

i.e., x c Kp. Thus K'I' = Kp
I6
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To show the remaining equality we first observe that the inclusion

U s "
K2 :KD holds trivially from the definition of the integral. Since2 2

K2 - KP and has measure 1, there remains only to be shown that for2 2

every x in Kp
2

SQ(x) = Q(x,0)di <+.

Let {W(i)I be a subcollection of the square non-singular submatricesiM
of W of rank m, such that the {W(i)M are distinct and such that

{pos W(i)} constitutes a covering of pos W. Let q()(i) denote the

subvectoc of q(&) corresponding to the columns of W determining W i)

For every x in KP and every ý in E, p() - T(&)x belongs to some
2

pos W(i) and since W(,) determines a feasible but not necessarily optimal

basic solution for the recourse problem whose right-hand side is

o(•) - T(&)x, we have that
.- !

Q(x,F) _ q(ý)( [p(ý)-T(ý)x] -v(i)(x,O.

The integral is isotone, thus

k W)(xQ(x,•.)d• -< / (xV)(x,C)du

(i M (i

where M(i)(x) - {Ijp(Q) - T(Q)x c pos W(i)I. The right-hand side

of this inequality is finite, since ý satisfies the covariance condition

(2.1). Let 2(j (x).W be a finite partition of E, where each 1(0)(x

is obtained from the finite collection M-(i)(x) n •J by a finite number

of set theoretic operations (intersections, set diffeLences). That such

a partition exists follows from the fact that x E Kp implies that2ta
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U--(i)(X) ) . Now, define v (j) (x, on Z(j) (x) as follows

• 7'(J) (xO - MaxIVe.(,l (i)(x)01 C -M(j)(x}

Then

fQ~x)dl = . fQ(x,ý)dii > V(j)(xE)d14.
_~) ((j) z~j)(x) (j) z(j)(X)

The last member of this inequality is a finite sum of finite terms, from
5• p i

which it follows that Q'x) is bounded above. Thus K2 D K2 , which

completes the proof.

The first equality in (4.2) extends to the case where W is also

random [Walkup and Wets, 1967-b] provided one requires that the restriction

of pos W(C) to H is continuous, where pos W($) is viewed as a map

from -, C RN+(nxm) into a metric space (C,d) whose points are convex

cones with apex at the origin and the metric d is determined by the

Hausdorff distance between their intersections with the unit ball [Walkup

and ",.ets, 1967-a]. However, when W is random, there seems to

be no easily verifiable condition which one could impose on [ so as to

insure that the se-ond equality in (4.2) also remains valid.

From the definition of the problem (2.2), it is easy to see that feasi-

bility Jepends only on the p, T components of $. Thus if we let

1RN ,
be the projection of on the p,T coordinates of R we have

-p,T

that

[ Kp = K,: n
2 :1

where

(4.4) K,(i,) = {xjp(L) - T( )x pos Wi ={x!Q(x' ) +"
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By arguments similar to those used in the first part of the proof

of theorem (4.1), one can show that K2 - K2(C where H is the
PST

support of the marginal distribution of (p(&),T(Ej).

Corollary (4.5). For a stochastic program with fixed recourse, where

C satisfies a weak covariance condition, such as (2.1), the relation

2K P VI SK2 =• K2 Ký-K2

holds, where

K, . 2(C) - {x~p(Q-T(Q)x c pos W for all (p()TQM)) in= ~,T p,T'

In view of the preceding corollary, we shall write K2 whenever we

want to refer to a set of constraints induced on x by the stochastic

constraints of problem (2.3): T(C)x + Wy - p(t) a.e. This set K2
I

possesses various interesting properties which we investigate in the

remainder of this section.

Theorem (4.6). Let E be a set obtained from PST by applying the

operations: topological closure, convex closure, positive closure,

positive scalar multiplication, or any of the (not necessarily unique)

inversesof these operations, then

K 2 = n K2(").

(The inverse operation of convex closure yields the extreme points.)

Proof. Suppose K2 = K2 (•), then the fact that pos W is closed

justifies replacing Z' either by its closure or by a dense subset of

Z' in the definition of K2 . The remaining assertions of the theorem

follow rather directly from the fact that pos W is a convex cone and

the definition of K2 (&) given by (4.4).
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Theorem (4.7). The feasibility region K2  is a closed convex subset

of Rn. Moreover if the closed positive hull of written
p ,T'

pos (-=p,T), is a convex polyhedral cone, then K2  is a convex poly-

hedron.

Proof. Since K n K2 the first part of the theorem follows

trivially from the ý-=p,T observation that for each (, K2(;) is

a closed convex polyhedron. The second part follows from theorem (4.6)

since in this case we may replace pTC R bya inie et

-pT by a finite set,

• namly byany et ofpoint whoe postivecombinations span psE,)

This set of points can be chosen finite by (4.6) since by assumption

pOS(p ) is a polyhedron and thus has only a finite number of extremal
pT

elements. (Note that there are other cases for which K2 is polyhedral,

e.g., if pos W = Rm, then K2 R7

Note that since we are dealing with finite dimensional real vector

spaces, which have the Lindelbf property, it follows that K2 can always

be represented as the intersection of at most a countable subcollection

of sets K2 (,). Also in view of theorem (4.6), the assumption that pos(p,T)

is polyhedral is probably the most general type of assumption which yields

an easy proof that K, is polyhedral. In practice one might expect that

very few cases will occur when pos(-'-p,T) will not be polyhediol since

pos(p,) is polyhedral if the components of p and T are independent,
p,T

if p and T have a finite discrete distribul-ion, if the convex hull

of : is polyhedral, etc. There is howevcr one other interestingp,T

case in which one is able to prove that K-, is polyhedral.

Before we consider this, we introduce a concept very useful in the



-18-

theory of convex polyhedra in general and stochastic programming theory

in particular. We first give a precise meaning to the notion of extremal

elements of a convex cone.

Definition (4.8). Let A be a matrix of row size m. The columns

of A can be thought of as points in Rm. Then a subset of the columns

of A, say T, constitutes a frame for the positive hull of A if

pos A = pos T and T is minimal, i.e., for every column Tk of T

we have that pos (T-.Tk) # pos T.

Simple examples will show that a set of points in Rm might contain

more than one frame and that two different frames do not necessarily have

the same cardinality. Naturally, every finite set of points in Rm con-

tains a finite frame.

Definition (4.9). The matrix A* is a poZar matrix of A if

(i) pos A = {tjA*t < 0}

(ii) The rows of A* constitute a frame of the polar cone

pos* A of pos A, where pos* A - {TJTt _< 0 for all t c pos Al.

Similarly, one could define the polar matrix of A as a matrix whose

rows determine a set of minimal supports for the convex polyhedral cone

generated by the points represented by the columns of A. In some sense,

the polar matrix is a positive inverse of W. The notion of polar matrix

was first introduced in [Wets, 1966-c] in connection with the first proof

of theorem (4.10) below. A similar concept, but used in a different

context, can also be found in the work of Fulkerson [Fulkerson, 1968].



-19-

He uses the name of blocking matrix.

In general, the number of rows of A* is not commensurate with the

numbers of columns of A. In particular A* might have no rows, which

corresponds to the case when pos A has no supports, i.e., when

pos A = Rm. On the other hand, if pos A is a cone over a neighborly polytope

[Grinbaum, 1967; Chap. 7], then pos A might contain an extremely large number

of rows when compared with the number of columns of A. Various efforts

have been made to relate the generalized inverse of a matrix A to the

polar uatrix of k. So far none of these attempts have been remunerated

by success. One might reasonably expect that no interesting relation does

exist, [Wets, 1968].

Theorem (4.10). Suppose T is fixed in the stochastic program (2.2)

and 4 satisfies a weak covariance condition, then K2 is a closed convex

polyhedron.

Proof. Since T is fixed, by corollary (4.5) x c K2 if and only

if (p(4)-Tx) c pos W for all p(E) in : where - is the supportP P

of the distribution of p(&). Now (p(4)-Tx) E pos W if and only if

W*(p(4)-Tx) -< 0. Thus x e K2 if and only if (WfT)x a W*p(Q) for

all p(4) in _E-r or, by theorem (4.6), for all p(ý) in E where E

is the closed convex hull of -p This possibly infinite system of

linear inequalities can be replaced by

(4.11) (W*T)ix a - Sup W p() i -

where W* denotes the ith row of the matrix W* and X is the number of

il
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rows of the matrix W*. Unless a* < +o for all i = i,...,2 the

problem is infeasible in which case K = 0 and the theorem holds

trivially, otherwise the system (4.11) constitutes a finite system of

linear constraints which determine the polyhedron

(4.12) K2 = {x (W*T)x >c a*}

ii
where ct* is the vector whose components are c[.

Corollary (4.13). If p(E) and T(E) are independent and-T (or

the closure of its positive hull) is polyhedral, then K2  is polyhedral.

Proof. Since p(E) and T(ý) are independent -- = p x T For, p, T p T"

each T(Q) in E. let K2 (T(ý)) denote the set of x's such thati T 2

[W*T(C)]x _ a*

, Now K2  Q I'l K2(ý) - fl~ K2(T(M). Since T is polyhedral, by

theorem (4.6) we may replace ' in T( by a finite set repre-

senting the extremal elements of Thus K2  can be written as a

finite intersection of polyhedra K2 (T(&)).

So far we have shown that the region of feasibility of a stochastic

program with fixed recourse, i.e., the set

K-K I K2

is a set possessing fairly interesting properties. It is always closed and

convex and under fairly general assumptions it is even polyhedral. When T is

fixed, we have also seen that x e K if and only if x satisfies some
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deterministic linear constraints (4.12) where a* represents in some

sense a lower bound of the set -T. Determining such a lower bound--

especially if it is easy to compute--might be very useful in obtaining

criteria of feasibility as well as for constructing algorithmic procedures

generating feasible solutions. In this pursuit it is convenient to intro-

duce some terminology related to convex cone ordering of real vector

spaces. This approach was first presented in some lectures given at the

University of California [Wets, 1967]. In his doctoral dissertation [Parrikh,

1967] Parrikh shows that these ideas can also be fruitfully exploited in a

slightly different setting.

Definition (4.14). The partial ordering -C is said to be a cone

ordering induced by a closed convex cone C C Rm if

x y is equivalent to y - x c C

We need the following obvious property of cone orderings:

Proposition (4.15). Let denote the cone ordering induced by the

closed convex cone CI and let 2 denote the cone ordering induced1~ C 2
by the closed convex cone C2 . Then

X% Y'C2 z implies x C+C" z

where C1 + C2  denotes the vector sum of C1  and C2 . In particular

if C1 D C2  then

C y-C z implies X'c z

C 1  ....C 2 I

Ii i i i i i i i i i
iiI
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I

Definitions (4.16). Let Z be a subset of Rm and *C a cone ordering

induced by C. A point a is said to be a grea.test lower bound of Z

with respect to the ordering induced by the cone C if a "•CaC for

all points a satisfying a for all C in E.

Moreover if aC also belongs to the closure of E, then aC is said to

be a proper low,?r bowud of Z.

Theorem (4.17). Consider a stochastic program with fixed recourse whose

random elements satisfy a weak covariance condition. Let C be a closed

convex cone contained in pos W, A(x) - {p(ý) - T(C)xl P(ý),T(E)e=pT}

and a c(x) is a proper lower bound of A(x). Then x E K2 if and only

if a c(X) E POS W.

Proof. By theorem (4.6), x E K if and only if the closed set
-- 2

A(x) C pos W. The rest of the proof follows from the last part of

proposition (4.15) since by assumption C C pos W.

Corollary (4.18). Suppose T is fixed in a stochastic program with

fixed recourse whose random elements satisfy a weak covaziance condition.

Suppose C is a closed convex cone contained in pos W and ac is a

proper lower bound of =. Then x E K2 if and only if

c() Tx c pos W. In particular, X E 2 if and only if

pos W - Tx c pos W, where atpos is a proper lower bound of

with respect to *pos W' Moreover, apos W W C* where a* is as

defined by (4.11).
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Proof. The first part of the corollary is an immediate consequence of

the theorem and the equality a* = a follows directly from their
p05 W

respective definitions.

Provided that a proper lower bound exists, the usefulness of the above
characterizations is only limited by our capability of computing it. When T
is fixed, one way to determine this proper lower bound is to compute W*. This

might be by itself a major undertaking which we shall discuss further
in the following section. In practice, finding such a lower bound reduces
down to finding some cone C contained in pos W such that the proper

lower bound,with respect to the ordering induced by C, of any subset in
R R is fairly easy to compute. This will certainly be the case if C

can be selected to be some orthant. If a lower bound of Ip,T with

respect to some orthant is also a proper lower bound, then by theorem

(4.17) and its corollary, verifying feasibility of any given x is a
fairly easy task. We shall devote a fair portion of the subsequent

developments to the case when pos W contains some orthant. Moreover,

the following proposition helps justify the relative importance we attach

to this case.

Propositio-n- (4.19.). Let be a cone ordering on Rm. Then every
bounded subset of Rm has a unique greatest lower bound if and only if

the cone C is the positive orthant with respect to some coordinate

system.

Proof. The if condition is obvious. To prove the only if conditions

we make use of Choquet's characterizations of simplices in terms of
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homothetic intersections. Suppose every bounded subset of Rm has a

unique greatest lower bound with respect to %C It is easy to verify

that uniqueness implies that C must be a pointed cone and that the

existence of lower bounds for full dimensional subsets of Rm implies

that C has dimension m. Let H be some hyperplane supporting C

at the origin only, H+ the closed half-space bounded by H which contains

c c
C, H+ the complement of H+ and a in H+ the unit normal to H.

Let s and t be any two distinct points of H+, then P - (s+c) Hc
+ +

and Pt a (t+C) n Hc are homothetic, with s and t greatest lower bounds

for Ps and Pt respectively. Suppose Q = Ps n Pt t 0. By the

hypotheses Q has a greatest lower bound q and thus (q+C) n c= P D Q.
q

Since Ps D Q, s is a lower bound for Q and sl<C q. Thus P D Pq. Th s P )q

and similarly Pt D Pq so that P qD Q = P rP D P q, i.e., P fn P p.
tqqtqs qs t q

Thus any homothets of the closed bounded figure P intersect either ina

a point, a homothet of P or the empty set. By Choquet's characterization

[Choquet, 19561--for a simple proof see [Eggleston, GrUnbaum and Klee,

1964]--P must be a simplex. Since C has full dimension, it follows

that C is a simplicial cone which is linearly isomorphic to the positive

orthant of Rm.

Theorems (4.7), (4.10) and (4.17) and their corollaries summarize

the most useful characterization of the feasibility region K2  which are

so far available. Among other things they allow us to rewrite the deter-

ministic equivalent program as
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(4.20) Find inf z(x) = cx + Q(x)

subject to Ax = b

(W*T(f))x > W*p(ý) for all • in -"p,T

where the function Q(x) is finite on the set determined by the con-

straints unless, as we shall see, it is identically -- on this set. If

the structure of allows us to use some of the preceding results,
p,T

then even more practically oriented expressions can be found for the

deterministic equivalent problem. For example, if T is fixed, then

one can write (4.20) as

(4.21) Find inf z(x) cx + Q(x)

Ax b

(W*T)x

x 0

where -* is defined by (4.11).

5. Finding a Feasible Solution. In the first part of this section,

we outline some very general ideas which can be used to find a feasible

solution. These necessary concp~ns nre summarized in the algorithm (5.5)

and its variants described below. So much will depend on the particular

structure or the particular way the entities involved are given that in fact

t is impossible to find a unique "best" procedure. The algorithms that we

describe should be viewed as possible skeletons rather than finished products.

In the second part of this section we deal with some specific cases which

allow for very effective solution procedures.

The results derived in the first part of this section were obtained in
collaboration with 1). Walkup.
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Determining whether a point x belongs to K1  reduces to checking

if it satisfies a system of linear inequalities. We consider this problem

solved and thus limit ourselves to the case of finding a point of K2 .

In the preceding section we have obtained various characterizations of the

set K2 . In general, i.e., when the support of the distribution or the

matrix W have no special properties, determining if a given x is in

K is equivalent to determining if
2

A(x) - {tIt = p(ý) - T(E)x, (p(ý),T(&)) c El

is or is not contained in the convex polyhedral cone pos W, where Z

is a set obtained from =-pT by any one of the operations mentioned in

theorem (4.6). If Z is a convex set (polyhedron) so is A(x). Thus

in general determining if a given x is feasible comprehends the problem

of determining when a convex set is contained in a convex polyhedral cone.

Depending on the manner in which the set A(x) is given, this problem

might turn out to be fairly easy or extremely difficult. If the set

A(x) is finite or more generally if its convex hull has only a finite

number of extreme elements (extreme rays and extreme points) [Klee, 1957]

which can be easily determined, then it is not very difficult to determine

if A(x) C pos W, since this involves at most solving a finite number of

linear programs which differ only in their right-hand sides, namely,

+

(5.1) Minimize w = es + es

Wy + Is+ - Is- k

Wy+as -Is + 0 (x)
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where e is a row vector of size m whose components are l's and

6I , k = l,...,t are the extremal elements of the convex hull of
(x)

A(x). Various tricks are available which allow for considerable

simplification and the work involved is by no means to be equated with

solving t linear programs [Van Slyke and Wets, 1969, Section 5].

Although in general finding the extremal elements of 6(x) might prove

to be a real challenge, in some particular cases this might not prove to

be very difficult, e.g., if the components of T(E) and p(C) are

independent, then the extremal elements of A(x) can be obtained by paying

attention only to the extremal elements of EpT which in this case is
, Rm(n+l

a rectangle (possibly unbounded) in R ). If either L(x) (or

its convex hull) is only available in terms of the bounding hyperplanes

of the set or when L(x) is not even polyhedral, then one would have to

resort to a technique somewhat similar to the one described below.

Feasibility Criterion (5.2). Consider a stochastic program with fixed

recourse whose random elements satisfy a weak covariance condition. A

vector x in K1 is a feasible solution if and only if the optimal

value of each of the k convex programs

(5.3) Find inf w = W*(Tx-p)
(p,T) k

subject to (p,T) c E

is greater than or equal to zero, wnere W* is the kth row of W* the

polar matrix of W, is the number of rows of W* and E is the closed

convex hull of pTp ,T'
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This feasibility criterion is nothing more than a reformulation of

the induced constraints found in the deterministic equivalent program

(4.20). The following proposition provides a method for "improving"

an infeasible solution. In fact, the proposition shows how one can

generate bounding hyperplanes of the set K2 .

Proposition (5.4). Consider a stochastic program with fixed recourse

whose random elements satisfy a weak covariance condition. Suppose E is a

set obtained from -PIT by topological, convex or positive closure and-p,
i is any point in R7. If (p,T) is a point of Z such that

W*(Tk-p) < 0 then either

S{jxj(W*T)x > W~pj

k k

is empty or is a closed halfspace in Rn containing K2 but not x.

If (p,T) and (p',T') are points in R(n+1) such that for all

sufficiently large positive X, (p ,TX ) = (p,T) + X(p',T') is a member

Sof Z and W*(Tx-p) is unbounded below as X ÷ +o, then either

f xl(* ) _> W p' }

is empty or a closed halfspace in Rn containing K2 but not i.

Proof. The first part follows directly from the feasibility criterion

(5.2). For the second part if W*(TX i-pA) W*(Tx-p) + XW*(T'x-p') goes to

-.0 as X goes to +w, then W*(T'R-p') must be strictly negative.k

Combining this last observation with the feasibility criterion (5.2)

completes the proof.
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This last proposition suggests the following algorithm for producing

a feasible solution x in K.

Algorithm (5.5).

Ui) At the start of the ith iteration a set S i of linear equations

and inequalities in the variables x are given. (At the start of the

first iteration S is just the set of linear relations determining

K1 , viz. Ax - b, x 1 0.)

i
(ii) A feasible solution x satisfying the linear relations S

is sought. If none exists the stochastic program is declared infeasible

and the algorithm terrinates.

(iii) For each row WE of the polar matrix W* in turn, the convex
k

i
program (5.3) is solved with x = x . If all Z programs have nonnegative

values, xi is defined to be x and the algorithm terminates. Otherwise

for some k a point (p,T) or points (p,T) and (p',T') as in

ploposition (5.4) are founi. In this case the appropriate inequality

W _T)x W> p or (W*T')x > W~p' is added to S to form

Si+l and the (i+l)st iteration is started from step (i).

If Z is a convex polyhedron given by linear equations and linear

inequalities, the programs (5.3) to be solved during step (iii) of the

above algorithm are linear programs. We can thus be more explicit in

the description of step (iii):

(iii') ... Otherwise for some k one finds either an optimal

basic solution (p,T) yielding negative objective or a basic solution

and a direction (p',T') corresponding to an unbounded feasible pivot

from (p,T) ...
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In this case we can prove:

Proposition (5.6). Suppose E used in the definition of K2 can be

selected to be a convex polyhedron defined by linear relations. Then

algorithm (5.5) using step (iii') terminates in a cinite number of

steps. It either generates a feasible solution of the program or it

establishes that the problem is infeasible.

Proof. It suffices to show the finiteness of the process. This follows

immediately from the fact that there are only a finite number of rows in

W* and only a finite number of basic solutions and unbounded basic

pivots for each problem (5.3). Thus there are only a finite number of

inequalities which can be added to S1 . Moreover, once an inequality

has been added it cannot be generated again.

Note that in fact this proposition gives another proof of the

polyhedral property of K2 under the hypotheses of the second part of

theorem (4.7). If Z is not polyhedral, there does not seem to be any

condition one could impose on the selection of (p,T) or (p',T') in

step (iii) of the algorithm (5.5) which would insure that the algorithm

converges, unless, perhaps, one is satisfied witb an epsilon type of

feasibility as in [Parrikh, 1967).

Not even taking into account the suostantial amount of work which the

computation of W* might necessitate, the somewhat labirious fashion

by which the algorithm (5.5) generates a feasiole solution is due to

the fact that to test the feasibility of any given x, one
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has to take into consideration if not all points of (or some set

p,T (rsm e

derived from it) at least a sufficiently large number so as to make the

process inefficient. In the previous section, we have seen that a con-

siderable simplification is possible when the sets A(x) have a proper

lower bound ac(x) with respect to the ordering induced by some convex

cone C contained in pos W. If this is the case, it is no longer

necessary to consider the whole set Hp,T' or some large subset of it

to verify the feasibility of a given x. As shown by theorem (4.17) it

will be sufficient to solve only one linear program of the form (5.1),

namely,

+

(5.7) Minimize w es + es

Wy + Is+ - Is- ac(x)

y a 0, _ 0, s- 0

This enormous simplification naturally depends on our capability

of finding a convex cone C in pos W, such that the proper

lower bound of any set will be fairly easy to compute. In the remainder

of this section we shall assume that the positive orthant pos I (or

some other orthant which can always be made to be the positive orthant

by an appropriate change in sign of some of the rows of the equations

T(ý)x + Wy = p(ý)) is contained in pos W. Given the practical use we

want to make of this assumption, proposition (4.19) justifies the restriction

to this case.

If the convex cone C of theorem (4.17) and its corollary can be

selected to be the positive orthdit, then A(x) has a proper lower bound
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if it contains a point a such that a. 6, i = ,...,m for all

6 in A(x) C Rm. This ordering induced by pos I is usually referred

to as the componentwise ordering. Thus in this case verifying if L(x)

has a proper lower bound, and if it does, finding it, is usually fairly easy to

do. In particular if T is fixed, then

A(x) - {p(E)Ip(ý) E p - Tx

and as shown in corollary (4.18) it suffices to find a proper lower

bound of 7 (or its closed convex hull) with respect to the component-P

wise ordering to determine a lower bound of A(x) for all x. In

this case it is determined by apos I - Tx, where (apos l)i < Pi for

all p in E (or its convex hull).
P

Feasibility Criterion (5.8). Consider a stochastic program with fixed

recourse whose random elements satisfy a weak covariance condition.

Suppose that for all x the set A(x) possesses a proper lower bound

a c(x) with respect to the ordering induced by a closed convex cone C

contained in pos W. Then i in K, is feasible if and only if the

system of linear relations

(5.9) aW :S 0, C (0) > 0

is inconsistent, where a is an m-row vector of variables 01. In

particular, if C - pos I and T is fixed, then i in K1 is feasible

if and only if the system of linear relations

(5.10) oW 'c 0, o(a-Ti) > 0

is inconsistent, where a is a proper lower bound of -P
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with respect to the componentwise ordering, i.e., a ip for

all p in E
p

Proof. This feasibility criterion is an immediate consequence of theorem

(4.17) and its corollary, since if either sys.em above is solvable,

then there exists a hyperplane, determined by its normal a,

separating pos W and ac(R) in the first case and pos W and

a - Tx - apos I(R) in the second case.

For computational purposes, the following proposition supplements

the feasibility criterion given above.

Proposition (5.11). Consider a stochastic program with fixed recourse

whose random elements satisfy a weak covariance condition and suppose that pos W

contains the positive orthant pos I. Suppose further that the rows of

T and p are independent and that each -_-i, the support of the random

variables in row i of T and p, is bounded. Then a (x) exists

for all x and is given by

a i(x) = Min{(pi-Trx)I(p,T)e -i}

where ai(x) is the ith component of apos W(x). Further if the columns

of T and p are also independent, then

n
a (x) - Min Pi - M ax tij1 - i: tijx

The feasibility criterion (5.8) is a generalization of the feasibility

test found in [Wets, 1966-b; Section 2]. It is not difficult to see that

if i is infeasible and we find some o satisfying (5.9) or (5.10),
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then we are in a very similar situation to that in algorithm (5.5) when

we found some row W* of the polar matrix of W and a point (p,T) of

E which could be used to generate a linear constraint which has to be

satisfied by every feasible x but which fails to be satisfied by x.

If aC () = PC - TC•' where (pcTc) belongs to FpT then if a

satisfies (5.9), the hyperplane

(aTC)x = apc

separates K2  from R. When T is fixed the closed halfspace con-

taining K2 determined by this hyperplane, can be written

as

(5.12) (aT) x >_ Ga.

The feasibility constraints of type (5.12) bear more than a passing

resemblance to those found in proposition (5.4).

In the remaining part of this section we limit ourselves to the case when T

is fixed. The extension of the results below to the case when T also contains

random elements is essentially routine, but requires the introduction

of more than a reasonable amount of cumbersome notation which seem

hardly justified in this survey. The algorithm, in this case, is again a

modification of the algorithm (5.5). We replace step (iii) by

(iii'') Solve the linear program

+

(5.13) Minimize w es + es-

Wy + Is+ - Is- = a -Txi

y a 0, s> + s 0 > 0
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where n is a lower bound of with respect to the ordering induced by
p +

pos I. Since pos W C pos I, the artificial variables s can be

deleted from the program (5.13) without impairing its feasibility. However,

if we incorporate them in our formulation, they guarantee a starting basis.

If w = 0, then xt  is a feasible solution and the algorithm

terminates. Otherwise at the optimum there is a set of

optimal multipliers a such that c(a-Tx ) > 0 and oW -5 0 (compare

these relations with those of the second part of the feasibility criterion

(5.8)). In this case the inequality

(5.14) (oT)x 2 c

is added to Si to form S +1 and the (i+l)st iteration is started

from step (i).

Proposition (5.15). Suppose T fixed in a stochastic program with

fixed recourse whose random variables satisfy a weak covariance condition.

Moreover, suppose that cc is a proper lower bound of the closed convex hull of

p with respect to the ordering induced by pos I and pos I c pos W.

Then, the algorithm (5.5) with step (iii'') terminates in a finite number

of steps. It either generates a feasible solution or recognizes that the

stochastic program is infeasible.

Proof. The matrix (W,I,-I) of program (5.13) contains only a finite

number of bases. Thus only a finite number of optimal multipliers of

type o can be generated. Moreover, once a constraint of type (5.14)

has been introduced in the set Si it can never be generated again.

In order for the minimum of w in (5.13) tD be positive, the optimal

solution must involve some of the artificial variables (s +,s ) at some
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positive level since otherwise w = 0, which implies that (a-Tx )

is in pos W and hence x1  in K2. Thus in fact the number of possible

a is much smaller than all possible bases contained in (W,I,-I). These

vectors a are in fact normals to bounding hyperplanes of pos W which

support pos W in a set containing the origin. We havw that

Proposition (5.16). Suppose that the basic optimal solution to (5.13)

with w > 0 contains exactly one of the artificial variables s

Then a is the normal of a supporting hyperplane of pos W which inter-

sects (supports) pos W in a facet, i.e., an (m-l)-dimensional face of

pos W.

Proof. By assumption (see Section 2) pos W is of dimension m. The

proof is complete if we observe that the optimal basis contains (m-l)

linearly independent points of pos W contained in a hyperplane supporting

pos W.

Thus if Proposition (5.16) applies, we are generating some row of a

polar matrix of W. Moreover, every row of W* can arise in this way.

However, it is not always possible to obtain the normal of a facet of pos W

by solving (5.13). In [Van Slyke and Wets, 1969; Sections 2.D and 2.E] it

is shown that even though this process will in some sense yeild very good

constraints on x, in general [Van Slyke and Wets, 1969; Proposition (25)

and Corollary (27)] it will generate more than a minimal set of supporting

hyperplanes of pos W. Thus in general the row matrix obtained from the

normals of these hyperplanes does not constitute a minimal set as required

by the definition (4.9) of W*.
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6. Characterizing Relatively Complete Recourse. As mentioned in the

beginning of Section 4, the models studied in [Dantzig, 19551, [Madansky,

1960], [Dantzig and Madansky, 1961], [Charnes, Cooper and Thompson,

1965], and [Kall, 19671 satisfy the relatively complete recourse condition,

i.e., for all x in K1 and for all ý in -p,T there exists y - 0

such that Wy - p(4) - T(4)x. Since practical considerations seem to

indicate that in applications this condition will be very often satis-

fied and when it is, the work involved in solving the stochastic program is con-

siderably simplified, it is of paramount importance to be able to determine

whether this condition is satisfied or not. The first efforts in this

direction can be found in (Wets, 1966-b], [Kall, 1967], (Wets, 1966-c] and

Dempster, 1968]. The hindsight that these studies have given us, shows

that this problem has close ties [Wets, 1966-c], [Dempster, 1968, Section

5], with the theory of positive linear dependence developed is due

by (Davis, 1954], [McKinney, 1962], [Bonnice and Klee, 1963], and more

recently by (Reay, 1965-a], [Reay, 1965-b] and (Hansen and Klee, 1969].

The study of various special forms of stochastic programs with recourse

[Walkup and Wets, 1969-a] suggests that it is convenient to distinguish

the following cases:

Definition (6.11). A stochastic program is said to have

(i) relatively complete recourse if K2 D KI;

(ii) complete recourse if pos W = R;

(iii) simple recourse if W = (I,-I), up to permutations of rows

and columns if necessary.
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Obviously, if W = (I,-I) then pos W = Rm and thus simple recourse

implies complete recourse which in turn implies relatively complete

recourse. This terminology was introduced in [Walkup and Wets, 1969-a].

(It differs from the one used in [Wets, 1966-a] where the problem with

simple recourse was designated as the complete problem in recognition

of the fact that it is a special case of (6.l.ii). Subsequent develop-

ment of the subject has suggested the distinction given here). To verify

if a given problem has relatively complete recourse theoretically involves

computing K2  and then verifying if the convex polyhedral set K is contained

in the convex sec K . Thus, once more we encounter here the problem of

determining if a convex polyhedron is contained in a convex set. As

already mentioned in Section 5, this problem might be easy or difficult,

all depending on the manner in which these two sets are defined. We shall

not pursue this matter any further here, at least not at this level of

generality. So far no general method to solve this particular problem

has been investigated. In the literature we know of only one example

of a problem with relatively complete recourse but not complete recourse.

Such a model was formulated by Tintner [Tintner, 1960] in connection with

the allocation of available resources in agriculture economics. This

model was later given the name of active approach to stochastic programming

(Sengupta, Tintner, and Millham, 1963]. In [Walkup and Wets, 1969-a,

Section 4] it is shown how this problem can be approached advantageously

by the techniques developed for stochastic programs with recourse.

Rather than seeking to characterize relatively complete recourse, the

research has concentrated on lt'c characterization of complete recourse.
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In [Kall, 1967, Section 4] one finds various theorems yielding sufficient

I conditions for complete recourse. These theorems correspond essentially to matrix

versions of the c aratheodory and Stinitz theorems [Reay, 1965-a] for polyhedral

cones. However, as mentioned in the beginning of this section, this problem

can best be handled in a somewhat more general setting. In (Wets,

1966-c] and perhaps even more clearly in [Dempster, 1968, Section 5] one

can see that the basic question can be formulated as: Given an m x n

matrix A determine the (facial) structure of the cone pos A generated

positively by the points corresponding to the columns of A; in particular,

determine if A contains a subset of columns which constitute a positive

basis for Rm.

Definition (6.2). A subset of columns (Al,...,Ak) B of the matrix

A is a positive basis for Rm, if pos B - Rm and the columns of B

constitute a frame (4.8), i.e., are positively linearly independent.

In the articles devoted to the theory of linear dependence, various

properties of positive bases have been found. One particularly useful

characterization can be found in [Reay, 1965-a]. An algebraic version of

his theorem can be found in [Wets and Witzgall, 1968, Proposition 9].

An algorithm determining if a given cone pos A does or does not contain

a positive basis can be found in [Wets and Witzgall, 1967]. The two

last references deal with more general problems related to

the algebraic characterization of the facial structure of convex polyhedral

cones. As far as we are concerned here, one can find there some indication

of the work involved in obtaining frames, k-faces for pos W and in
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particular the polar matrix of W. The particular problem of determining

if a stochastic program has complete recourse can be settled by finding the

lineality space of pos W [Wets and Witzgall, 1967, Section 4], where the

lineality space denoted by 9 pos W is defined as the union of all the

lines contained in pos W. In [Wets and Witzgall, 1967] it can be seen

ihat finding 9 pus W amounts to a fairly small amount of computational

work. Obviously, we have the following proposition:

Proposition (6.3). A stochastic program has complete recourse if and

only if the dimension of . pos W is m.

In general, if m - dim(Spos W) is small, the effort involved

in finding the lineality space is by no means wasted, since in this

case computing the polar matrix W* would be very easy. This would

allow us to use some of the algorithmic procedures described in the pre-

vious section which involve as prerequisite the computation of W*.

7. The Objective Function. The three preceding sections have been essentially

devoted to obtaining various properties of the set K2 on which Q(x) < -,

which with KI determine the feasibility region of the stochastic program

(2.2). In this section we shall be especially concerned with the properties

of z(x) on K or more particularly of Q(x) on K2 . In order to

derive these properties we shall rely on some results from the perturbation

theory for linear programming. Although we could use some more elementary

facts to obtain certain of the desired results, the theorem (7.2) below

is probably besL suited to our purposes, and is also a very useful conceptual

tool in the general area of stochastic programming. It has been used

[Walkup and Wets, 1968] to study the properties of decision rules, so
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prominent in literature devoted to stochastic programs with chance-

constraints. In order to allow us to rely on the intuitive geometric

content of this result, we need the following definition.

Definition (7.1). A finite closed polyhedral complex will be any finite

collection X of closed convex polyhedra, called cells of X , such

that:

j (i) If C is a cell of X then every closed face of C is a

member of X.

(ii) If C1 and C2 are distinct cells of X, then either they

* are disjoint, or one is a face of the other, or their inter-

sect!on is a face of each.

Theorem (7.2) (BASIS DECOMPOSITION THEOREM). Let P(t) denote the

* linear program

Minimize cx

subject to Ax t

x> 0

where c is fixed and A is a fixed m x n matrix of rank m. Then:

(i) P(t) is feasible if and onlv if t lies in pos A.

(ii) Either P(t) is bounded for all t in pos A or P(t)

is unbounded for all t in pos A.

(iii) If P(t) is bounded there exists a decompcsition of pos A

into a finite closed polyhedral complex X whose cells are

simplicial cones with vertex at the origin, and a one-to-one

correspondence between the one-dimensional cells of y and
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selected columns of A which generate them such that

(a) the closed m-dimensional cells of Y cover pos A, and

(b) the m columns of A associated with the edges of a

closed m-dimensional cell C of X constitute an

optimal basis for all t in C.

This theorem which is proved in [Walkup and Wets, 1969-b] has

various important consequences, e.g., it follows from part (iii) that

provided P(t) is bounded there exists a piecewise linear con-

tinuous function x(t) which determines a basic optimal solution

for t in pos A. The particular consequences of interest here are

given in the two following corollaries.

Corollary (7.3). The function Q(t) = {Min cxlAx = t, x _ 0} is a finite

convex polyhedral function on pos A unless Q(t) = - f for nome t in

pos A, in which case Q(t) is identically -- on pos A.

Proof. The finiteness and unboundedness situations are taken care of

by part (ii) of the above theorem. For the remainder it suffices to observe

that Q(t) will be linear on every simplicial conical cell of the poly-

hedral complex Y generated by the decomposition of pos A, and that

the convexity of Q(t) follows from the fact that if x0  and xi are

optimal solutions for t = t 0 , tI, then (l-X)x 0 + Xx1 is a feasible but

not necessarily optimal solution when t = (l-X)t 0 + XtI.

Corollary (7.4). The function Q*(t) = iMin txlAx = b, x > 0o is a finite

concave polyhedral function which for every vector tT in pos(A ,-A T,I)

= It = uA - vA + sl, u > O, v Z 0, s > 0 T unless Q*(t) = +• for

some t in pos(A T,-A TI) in which case Q*(t) is identically +4 on
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pos (AT,-AT, I).

Proof. This corollary follows trivially from the previous corollary

and a straightforward application of the standard duality theorem of

linear programming.

It is now easy to see that:

Proposition (7.5). The function Q(x,E) = Q(x,[q(E),p(ý),T(D)]) is a

convex polyhedral function in x on K2  for each E in E. Moreover,

it is concave polyhedral in q(ý) and convex polyhedral in (p(&),T(ý)).

Proof. By definition Q(x,&) equals {Min q(ý)yIWy = p(E) - T(E)x, y > 01.

The right-hand sides of the constraints of this problem are linear

in x and (p(ý),T(e)). Application of Corollary (7.3) yields the

assertions of the proposition with respect to x and (p(ý),T(C)). The

remainder follows from corollary (7.4).

Note that the above proposition is not restricted to the domain of

finiteness of Q(x,ý) but in fact holds for all x in Rn and ý in

-: C RN provided one adopts the standard convention of setting Q(x,c) =

if the constraints define an empty set and Q(x,ý) --- if the problem

is unbounded. This fact would allow us to prove the first assertion of

the theorem below without any restriction whatsoever on the distribution

of r; in fact, the convexity of z(x) holds even when W is also a

random matrix [Walkup and Wets, 1967-b; Theorem (4.')].

Theorem (7.6). Consider a stochastic program with fixed recourse

(2.2) whose random elements satisfy a weak covariance condition. Then
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z(x) = cx + Q(x) = E.{c(ý)x + Q(x,ý)} is a convex function on K.

Moreover, z(x) is either finite on K or z(x) is identically -•

on K.

Proof. Since cx is linear in x and K2 D K, it is sufficient to prove

the above assertions with z(x) and K replaced by Q(x) and K2

respectively. The convexity of Q(x) follows directly from the isotone

and subadditivity of the integral fdvi and proposition (7.5) which

yields the convexity of Q(x,ý) in x. By theorem (4.1) the function

Q(x) is less than +- for all x in K2 , thus to complete the proof it

suffices to show that if Q(R) -0 for some x in K 2 , then Q(x) = --

for all x in K2. Suppose Q(R) = -- for some R in K2 then the

set JEIQ(i,C).= -1 must have positive measure. This follows from our

definition of the integral and the weak covariance condition. By

corollary (7.3), for any C in ', Q(5,,) =-- implies Q(x,ý) =

for all x in K,. Thus for all x in K2 the set {•IQ(x,•) =

has positive measure, i.e., Q(x) -• for all x in K2 .

In general Q(x), and thus z(x), are not continuous on K, but

under very general conditions one can prove that Q(x) is lower semi-

continuous on the set on which it is finite [Walkup and Wets, 1969-c].

The lower semicontinuity of z(x) is in fact sufficient to imply its

continuity if we can show that K2 is polyhedral (see Section 4), since

every convex function is upper semicontinuous on a convex polyhedron

[Gale, Klee and Rockafellar, 1968]. Under the conditions we have imposed

on the problem (2.2), we can prove a much stronger continuity condition
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which among other things allows us to show in the next section that the deter-

ministic equivalent p,'ogram (3.2) possesses strong regularity properties.

Theorem (7.7). Consider a stochastic program with fixed recourse whose

random elements satisfy a weak covariance condition. Suppose z(x) is bounded

on K. Then z(x) satisfies a Lipschitz condition, i.e., there is some

constant B such that x,x 0  in K imply

fz(x) - z(x°)j _ Bflx - x0fl

where f1 fl denotes the Euclidean norm in Rn.

Proof. Again the linearity of cx allows us to restrict our attention

to Q(x). We must show that if Q(x) > -- on K2 and

x,x 0 E K2 then there exists some constant B such that

IQ(00 - Q(x') < B flx - x0'•

Given any x in K2  and ý in E, Q(x,ý) is finite by Theorem

(7.6) and can be expressed in terms of a basic solution of a linear

program by writing

(7.8) Q(x,0) = q(•)(i) (p(Q) - T(Q)x)

where W(i) is a square nonsingular submatrix of W of rank m and

,(I)(,) is the corresponding subvector of q(1) as in theorem (4.1).

Since by proposition (7.3) the function Q(x,Q) is convex polyhedral in

x, the function

(X'XO;Q = IQ(x,•) - Q(x0 ,.)|
x1- x
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achieves its maximum when x and x0  both belong to the region of

linearity which has maximum slope. For x and x0  in this region by (7.8)

we have that there exist some index (i) such that

(7.9) IQ(x,) - Q(x°,0) = q( W(i)(o

.< B~i II q(,...l'lT(O I!'Hix° - xli"(i (i)M

where B is some constant related to the determinant of W-1

By the covariance condition (2.1) the right-hand side of the inequality

is integrable. Since the integral is order preserving we have that

IQ(x) - Q(x°)I < fIQ(x,) - Q(x0 ,Q)IdF(Q)

B(i) Mix0 - x IIf Jq(Q)Mi1I-.1IT(E) lldF(t) < BIJx 0 - xll

where B is the maximum over (i) of B(i )fIIq(M 1(i)hII'IT(4)JIdF(O. B

is finite since by theorem (7.2) there are only a finite number of cells

in y and for each index (i) the finiteness of the integral is assured by the

covariance condition (2.1).

So far we have made very little use of the form of the distribution

of E to derive the properties of the objective of the deterministic

equivalent program (3.2), except naturally for the covariance condition.

Below, we obtain two interesting characterizations of Q(x), or equi-

valently of z(x), which rely on some further properties of F(,,). The

first one of these theorems (7.17) can be obtained in many ways; for example,

one could make use of the representation of the epigraph of Q(x,Q) in

terms of its supporting hyperplanes, i.e., use the properties of the polar
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matrix of [ 0] [Wets, 19671, or one could also use some arguments

involving the generalized inverse of W. However, in order to unify

our treatment, we shall rely on Theorem (7.15), which is a mild

generalization of a lemma in [Dantzig and Madansky, 1961).

A pair (x,4) e K 2x- is said to be acceptabZe if Q(x,C) is finite.

In view of Theorem (7.7) it is pointless to consider any other situation,

and thus, for the remainder of this section we shall limit ourselves to this

case. From duality theory, it follows that the linear program

(7.10) Maximize w = 1T[p(Q) - T(0)x]

subject to rW f q(•)

where 7 isan m-row vector, is feasible and bounded whenever the pair

(x,Q) is acceptable. Let

D(4) = 711TW ý ()

be the polyhedron determined by the constraints of (7.10). Its set of

vertices will be denoted by ext D(&). Note that ext D(&) might be

empty, but if it is empty for some C, then it is also empty for all

in -= If this is the case and since the programs (7.10) are bounded for

(x,E) e K2 xE we must then be confronted with an acute intection of degeneracy.

For each acceptable pair, let n(x,4) be the set of optimal solutions

to (7.10), i.e., for each 7r(x,4) in R(x,4) we have that

r(x,ý)[p(E) - T(E)x] = Q(x,4). The set R(x,4) is the convex hull of

vertices and extreme rays of D(O). By Rf (x,&) we denote the convex

hull of the vertices of D(&) contained in R(x,4). Note that

fl(x,E) is empty only if ext D(4) is empty.
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Proposition (7.11). For each x in K2 , there exists a countable

family {Ir(x,1)} with domain : and range Rm, with •(x,&) J-measurable

and such that {1T(x,F,)1 is dense in H(x,0) for all ý in Such

a function lT(x,ý) will be called an y-measurable selector.

Proof. For each x in K2 , the graph {(iI(x, ),•)I 1 c J of the

multivalued function H(x,E) is a Borel subset of Rm X This follows

immediately from

(i) f(x,ý) can be described by a finite number of algebraic

expressions in p(&),T(C) and q(ý) which are obtained

from the optimality and feasibility requirements for linear

programs;

(ii) is a closed subset of R0; and

(iii) p(C),T(O) and q(&) are coordinates (projections) of &.

Now, note that for all C in E, the sets H(x,ý) are non-empty and closed.

Since 9 is the completion of the Borel algebra on R N, a theorem on

measurable scections [Castaing, 1967, Theorem (5.4)] yields the existence

of the g-measurable selectors jrr(x,ý)}.

For the remainder of this section, all we need is the existence of some

t
g-measurable selector T(x,E) in TI (x,ý). This can be obtained by invoking

some weaker result on measurable selectors [Freedman, 1966; Theorem (4)] or by

relying on the fact that in this case each function 7r(x,E) is the convex com-

bination of a finite number of "extreme" functions 7r(x,ý) passing through the

tvertices of polytopes determined by It (x,E). A constructive but rather lengthy

prooi of the existence of some a-measurable selector, can also be found in

[Kall, 1967, Section 1, Satz 1].
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Proposition (7.12). Consider an acceptable pair (x,&). Suppose that

D(E) 0 0 and let w(x,&) e (x..). Then the hyperplane

H = {(z,x)Iz + r(x,E)T(ý)x f ir(x,E)p(&)1 is a supporting

hyperplane -f the epigraph {(z,x)lz Z Q(x,ý), x e K2 1 of the convex

polyhedral function Q(x,&) at the point (QGx,•),x). Moreover,

I 17(x,,)T() If I B(ý) where B(&) is the maximum slope of a linear part

of the function Q(x,ý).

Proof. The first part of the proposition follows from the fact that for

all x in K2 and & in Z, 7r(x,E) is a feasible but not necessarily

optimal sclution of corresponding linear program (7.10), and thus

Q(x,C) = iT(x,&)[p(E) - T(ý)x] 2 w(x,C)[p(&) - T(ý)x].

Hence, for all x in K2  and z a Q(x,), i.e., for the points belonging

to the epigraph of Q(x,ý), we have that

(7.13) z + 7r(x,&)T(ý)x > T(xE)p(ý).

That H supports at (Q(x,&),x), follows from the identity

(7.14) Q(x,') = 7(x,&)[p(ý) - r(E)x].

The remainder follows from the observation that 7T(X,&) is a

vertex or a convex combination of vertices of D(ý), which correspond to

basic solutions of (7.10). Arguments similar to those invoked to obtain (7.9)

yield the desired inequality.

The first iart of the following theorem is a slight generalization of

Lemma 2 in [Dantzig and Nadansky, 1961]. Although it is a trivial
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consequence of the two previous propositions, it has proven to be

extremely useful as a conceptual guide when one seeks algorithmic pro-

cedures for solving stochastic programs.

Theorem (7.15). Let x belong to K2 and 7r(x,E) is an g-measurable

selection of R (x,&). Then the hyperplane {(z,x)iz + E jr(x,E)T(ý)jx

E Ci(_x,'I)p(E)j is a supporting hyperplane of the epigraph

j(z,x)iz _ Q(x),x E K2 } of Q(x) at the point (Q(x),x). Moreover,

ECIjjr,(x,ý)T(E)II1 < B where B is the Lipschitz constant of Q(x)

as in (7.7).

Proof. The first part of the theorem follows from integrating both sides

of the relations (7.13) and (7.14). The measurability question is taken

care of by the fact that in each case the expressions involved are

continuous functions of measurable function and the finiteness of the

integrals is assured by our assumptions on problem (7.10) and the

covariance condition (2.1). As for the remainder, it follows straight-

forward from (7.9) and the definition of Hf (x,•).

Corollary (7.16). Suppose the matrix T is fixed. For all x in K2,

let 7T(x) = E{7T(x,,)} where Tr(x,&) is an cl-measurable selection. Then

the vector (l,7(x)T) is the normal of a supporting hyperplane of the

epigraph of Q(x) at (Q(x),x). Moreover, I 7(x)TI! < B.
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Therem (7.17). If is a finite set, i.e., when F(C) is

a finite discrete distribution, then Q(x) is a convex polyhedral

function.

Proof. Q(x) = EC{Q(x,ý)} is by (7.5) a convex combination of a finite

"number of polyhedral functions in x.

Combining the last theorem with the second part of theorem (4.7)

it follows naturally that when E is finite the deterministic equivalent

program (3.2) can be written as the minimization of a convex polyhedral

function on a convex polyhedron or by introducing some additional con-

straints as a linear program. One way to do so, but not necessarily

the most efficient one (especially if the assumption of relatively complete

recourse is not satisfied and some of the components of q and T are

random), is to express the problem as a large-scale linear program along

the lines of [Dantzig and Madansky, 1961; (29), (37)], a variant of which

can be found in [Wets, 1966-b; Section 3B, Case 1].

If F(&) is an absolutely continuous distribution, then the following

propositions can be found in [Kall, 196 7 ], and [Wets, 1966-b], respectively.

Proposition (7.18). Consider a stochastic program with complete recourse,

such that q is fixed and F(ý) is an absolutely continuous distribution.

Then Q(x) is differentiable on K2 = Rn.

Proposition (7.19). Consider a stochastic program with fixed recourse such

that q and T are fixed and F(&) is an absolutely continuous distri-

bution; then Q(x) is differentiable.
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Both proofs rely essentially on the fact that for a given x,

n(x,i) is only multivalued on sets of measure zero. Thus in view of

theorem (7.15), integrating T(x,E)T(&) on H where ir(x,C) is any

g-measurable selection always determines the same supporting hyperplane

of the epigraph of Q(x). From this it is implied that the supports are unique

for all x in K i.e., the convex function Q(x) is differentiablei 2

[Rockafellar, 1969; Section 25]. Although both propositions are correct, their

proofs are incomplete since they fall to show that every normal to a support

of Q(x) can be obtained as the integral of g-measurabie selectors of

]T(x,C). This and some generalizations of the above propositions will

be included in a projected paper.

For stochastic programs with simple recourse, it suffices that the

marginal distribution of the subvector of random variables (p

i - l,...,m be absolutely continuous [Walkup and Wets, 1969-a; Proposition

(2.8)]. If only the right-hand sides p(Q) are random, it suffices that

each marginal distribution of C be continuous [Wets, 1966-a; Proposition

(21) ). All these constitute sufficient conditions for differentiability

of Q(x). There does not seem to be any simple condition which would also

be necessary for the differentiability of Q(x).

8. Some Regularity Properties of the Equivalent Program. The study of

constrained optimization has led to various regularity conditions for opti-

mization problems which in some sense determine if the problem is "well"

formulated and usually give some indication as to the type of method(s)

one could reasonably expect to generate solution procedures. The standard
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approach is to study the effect that small perturbations of some of the

constraints will have on the optimum. For convex programs these regularity

conditions have been traditionally--and for good reasons--related to the pro-

perties of a so-called dual problem, although they can very often be verified

without necessarily deriving the actual dual problem [Rockafellar, 19671,

[Van Slyke and Wets, 1968], [Rockafellar, 1968).

Definition (8.1). A convex program -s

(i) feasible if the set determined by the constraints is nonempty,

(ii) solvable if the value of the infimum is finite and achieved

for some value of the variable,

(iii) dualizavZe if there is no duality gap, i.e., if the optimal

value of the convex program and its dual are equal,

(iv) stable if there exist (optimal) nontrivial Lagrange multi-

pliers or equivalently for convex programs if the dual problem

is solvable.

The terminology used here differs from that used by [Rockafellar, 1967]

and [Van Slyke and Wets, 1968] in only one respect: The dualizable

condition corresponds to what they refer to as normality. Note that if a

convex program is stable, it is also dualizable [Van Slyke and Wets,

1968; Proposition (6.8)] and obviously that solvability implies feasi-

bility.
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In Sections 4 and 7 we have established that the deterministic

equivalent program of a stochastic program with fixed recourse whose

random elements satisfy a covariance condition is a convex program of the

form

(8.2) Find inf z(x) - cx + Q(x)

Ax b

W*T(-)x W-p() p,T

X -, 0

where z(x) is a convex ftmction which is either identically -- on

the subset K2 of in determined by the induced constraints or it is

finite on K in which case it is Lipschitzian with constant B = lcH + B,

where B is the constant for Q as defined by Theorem (7.7). Here, we

shall consider perturbations of the fixed constraints Ax - b. Following

[Van Slyke and Wets, 1968; Section 3] we can thus write the dual program

of (8.2) as

(8.3) Find sup v

subject to v < Q(x) + (c-TrA)x + 7b

for all xc K12 {xix - 0}.

This program can be interpreted as seeking the "highest" supporting

hyperplane of the epigraph C of the variational function

*(u) = {Inf z(x)IAx - b - u, x c K2 nn.

I.2
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Characterizing feasibility for the program (8.2) has been the burden

of Section 5. In the remainder of this section we investigate some

sufficient conditions for the program (8.2) to satisfy one or more of the

properties listed in definition (8.1). We shall see that for a broad

class of stochastic programs with fixed recourse, the equivalent convex

program possesses the desirable regularity properties.

Theorem (8.4). Consider a stochastic program with fixed recourse whose

random elements satisfy a weak covariance condition and suppose that the

constraint set K is bounded, then the deterministic equivalent program

(8.2) is solvable and dualizable.

"Proof. If z(x) = -• on K, the theorem follows trivially from the

standard i- conventions. If z(x) is finite, it is Lipschitz (7.7)

and thus continuous, i.e., attains its minimum on K - KI n K2 which is

compact since it is bounded by assumption and closed since it is the

intersection of a closed polyhedron K and the closed set K2 (Theorem

(4.7)). Thus (8.1) is solvable. It remains to be shown that in this case

it is also dualizable. This follows in a rather straightforward fashion

from [Van Slyke and Wets, 1968; Proposition (5.1)] and the observation

that the compactness of K and the continuity of z(x) is sufficient to

establish that the epigraph e of the variational function

4(y) - {Min z(x)Ix E K-yl is a closed set.

Easy examples of stochastic programs with recourse can be found,

satisfying all hypotheses of the previous theorem except the boundedness

of K, whose infimum is finite but which are not solvable. In [Williams,
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1965] one can find a detailed characterization of this situation for

stochastic program with simple recourse. The dualizability of (8.2)

also requires some restrictions. The following example which has

only T random and K unbounded possesses a deterministic equivalent

program which is not dualizable; in fact, in this case there is an

infinite duality gap.

Example (8.5). The deterministic equivalent program of

Find inf z(x) -x 2 + E {Min yl

xI -X 2  -0

IX - Y1 - Y2  = 0

Y22 - Y2 "Y3 ' 0

X1 , X2 ! 0 Y19 Y2, Y3 y- 0

where E has a continuous distribution on [1,-) with density
-2

f(-l) E-2 and E = -1, has an optimal value of 0. The

optimum value of the dual of the deterministic equivalent program is

-0. It is not known if there exist stochastic programs (with fixed

recourse or not) whose deterministic equivalent programs exhibit a finite

duality gap.

The following lemma proved in [Walkup and Wets, 1969-di is parti-

cularly useful since it is immediately applicable to all stochastic programs

whose constraints determine a polyhedral region. Theorems (4.7), (4.10)

and Corollary (4.13) have shown that this will be the case in all but the

most sophisticated applications.



-57-

Lemma (8.6). Consider the mathematical program

(8.7) Minimize f(x)

subject to Ax b,

x 0

where the objective f is convex and Lipschitz on a polyhedron and (8.7)

is finite, then (8.7) is stable.

Theorem (8.8). Consider a stochastic program with fixed cecourse whose

random elements satisfy a weak covariance condition. Suppose that K

is polyhedral and the program is finite. Then the convex program (8.2)

is stable.

Proof. It suffices to observe that by Theorems (7.6) and (7.7) the hypotheses

of the Lemma (8.6) are satisfied.

To see that the hypotheses of Theorem (8.8) are necessary to obtain

stability, consider again the example (8.5) with the additional fixed

constraint x, U 1. This problem has a finite optimum, in fact, is

solvable. However, small perturbations of the constraints will change the

value of the optimum drastically. It is ean, to verify that the dual is not

solvable.
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